napkin solutions > Ch. 70

Back to Chapter Selection

Table of Contents

  1. Problem 70A
  2. Problem 70B
  3. Problem 70D

Problem 70A #

Problem 70A (Four lemma). In an abelian category, consider the commutative diagram𝑝𝑞𝑟𝑝𝑞𝑟𝑎𝛽𝛾𝛿𝐴𝐵𝐶𝐷𝐴𝐵𝐶𝐷where the first and second rows are exact. Prove that if 𝛼 is epic, and 𝛽 and 𝛿 are monic, then 𝛾 is monic.Solution by finalchildBy Mitchell’s embedding theorem, move the category to a left 𝑅-module.𝑐𝐶 (𝛾𝑐=0) Plan: We will prove 𝑎𝐴 (𝑞𝑝𝑎=𝑐)Then, by the exact sequence 𝐴𝑝𝐵𝑞𝐶, 𝑐=𝑞𝑝𝑎=0It proves 𝛾 is monic.finding 𝑎𝛿𝑟𝑐=𝑟𝛾𝑐=0Since 𝛿 is monic, 𝑟𝑐=0𝑐Ker𝑟By the exact sequence 𝐵𝑞𝐶𝑟𝐷, 𝑏𝐵 (𝑞𝑏=𝑐)𝑞𝛽𝑏=𝛾𝑞𝑏=𝛾𝑐=0𝛽𝑏Ker𝑞By the exact sequence 𝐴𝑝𝐵𝑞𝐶 and epicness of 𝛼, 𝑎𝐴 (𝑝𝛼𝑎=𝛽𝑏)𝛽𝑝𝑎=𝑝𝛼𝑎=𝛽𝑏Since 𝛽 is monic, 𝑝𝑎=𝑏𝑐=𝑞𝑏=𝑞𝑝𝑎

Problem 70B #

Problem 70B (Five lemma). In an abelian category, consider the commutative diagram𝑝𝑞𝑟𝑠𝑝𝑞𝑟𝑠𝛼𝛽𝛾𝛿𝜀𝐴𝐵𝐶𝐷𝐸𝐴𝐵𝐶𝐷𝐸where the two rows are exact, 𝛽 and 𝛿 are isomorphism, 𝛼 is epic, and 𝜀 is monic. Prove that 𝛾 is anisomorphism.Solution by Jihyeon Kim (김지현) (simnalamburt)Mitchell’s embedding theorem 따라, 주어진 (small) abelian category left 𝑅-module category 옮겨주 full, faithful, exact functor 존재한다. 따라서, 주어진 문제를 left 𝑅-module 간주하고 풀겠다. (Object module, morphism module homomorphism 대응됨)𝛾 isomorphism임을 증명하려면, 𝛾 injective이고 surjective임을 diagram chasing 통해 증명하겠다. (공공장소에서 열람하지 말것)1. 𝛾 injective임을 증명𝑐𝐶 𝛾𝑐=0 만족하는 원소라고 하자.주어진 commutative diagram 의해, 𝛿𝑟𝑐=𝑟𝛾𝑐 성립하고, 𝛾𝑐=0이므로, 𝛿𝑟𝑐=𝑟0=0이다.𝛿 isomorphism이므로, injective하다. 따라서 𝑟𝑐=0이다. Kernel 정의에 의해, 𝑐ker𝑟이다. 줄이 exact sequence이므로, im𝑞=ker𝑟이다. 따라서 𝑞𝑏=𝑐 만족하는 𝑏𝐵 존재한다.주어진 commutative diagram 의해, 𝑞𝛽𝑏=𝛾𝑞𝑏=𝛾𝑐=0 성립한다. Kernel 정의에 의해, 𝛽𝑏ker𝑞이다.아랫 줄이 exact sequence이므로, im𝑝=ker𝑞이다. 따라서 𝑝𝑎=𝛽𝑏 만족하는 𝑎𝐴 존재한다.𝛼 epic이므로, surjective하여, 𝛼𝑎=𝑎 만족하는 𝑎𝐴 존재한다.주어진 commutative diagram 의해, 𝛽𝑝𝑎=𝑝𝛼𝑎=𝑝𝑎=𝛽𝑏 성립한다.𝛽 isomorphism이므로, injective하다. 따라서 𝑝𝑎=𝑏이다.이를 𝑐 대해 표현하면, 𝑐=𝑞𝑏=𝑞𝑝𝑎 된다. 줄이 exact sequence이므로, im𝑝=ker𝑞이다. 이는 𝑞𝑝=0 의미한다. 따라서, 𝑐=𝑞𝑝𝑎=0이다.𝛾𝑐=0이면 𝑐=0이므로, 𝛾 injective이다.2. 𝛾 surjective임을 증명임의의 원소 𝑐𝐶 대해, 𝛾𝑐=𝑐 만족하는 𝑐𝐶 존재함을 보이면 된다.𝛿 isomorphism이므로 surjective하다. 따라서 𝛿𝑑=𝑟𝑐 만족하는 𝑑𝐷 존재한다.주어진 commutative diagram 의해, 𝜀𝑠𝑑=𝑠𝛿𝑑=𝑠𝑟𝑐 성립한다.아랫 줄이 exact sequence이므로 𝑠𝑟=0이다. 따라서 𝜀𝑠𝑑=0이다.𝜀 monic이므로 injective하다. 따라서 𝑠𝑑=0이고, kernel 정의에 의해 𝑑ker𝑠이다. 줄이 exact sequence이므로 im𝑟=ker𝑠이다. 따라서 𝑟𝑐0=𝑑 만족하는 𝑐0𝐶 존재한다.주어진 commutative diagram 의해 𝑟𝛾𝑐0=𝛿𝑟𝑐0=𝛿𝑑=𝑟𝑐이다.따라서 𝑟(𝛾𝑐0𝑐)=0이고, kernel 정의에 의해 (𝛾𝑐0𝑐)ker𝑟이다.아랫 줄이 exact sequence이므로 im𝑞=ker𝑟이다. 따라서 𝑞𝑏=𝛾𝑐0𝑐 만족하는 𝑏𝐵 존재한다.𝛽 isomorphism이므로 surjective하다. 따라서 𝛽𝑏=𝑏 만족하는 𝑏𝐵 존재한다.주어진 commutative diagram 의해 𝛾𝑞𝑏=𝑞𝛽𝑏=𝑞𝑏이다.따라서 𝛾𝑞𝑏=𝛾𝑐0𝑐이고, 식을 𝑐 대해 정리하면 𝑐=𝛾𝑐0𝛾𝑞𝑏=𝛾(𝑐0𝑞𝑏)이다.𝑐=𝑐0𝑞𝑏라고 하면 𝑐𝐶이므로, 임의의 𝑐 대해 𝛾𝑐=𝑐 만족하는 𝑐 존재한다.따라서, 𝛾 surjective이다.결론적으로, 𝛾 injective이고 surjective이므로 isomorphism이다.

Problem 70D #

Problem 70D (An additive category that is not abelian). Consider a category, where:the objects are pairs of abelian groups (𝐵,𝐴) where 𝐴 is a subgroup of 𝐵.the morphisms (𝐵,𝐴)(𝐵,𝐴) are maps 𝑓:𝐵𝐵 where 𝑓img(𝐴)𝐴.(You can think of this similar to the 𝖯𝖺𝗂𝗋𝖳𝗈𝗉 category, seen in Chapter 73. We use abelian groups here tomake the category additive.)This category can be equivalently viewed as the category of short exact sequences 0𝐴𝐵𝐵/𝐴0of abelian groups.Show that the arrow (𝑋,0)(𝑋,𝑋) is monic and epic, but not an isomorphism.Conclude that the category is not abelian.Solution by RanolPIs the arrow (𝑋,0)𝑓(𝑋,𝑋):𝑋𝑋 some group homomprhism? No, “the” only natural map make senseis the id𝑋.Experts should not say “natural”, “common practice”, “obvious”, or similar to learners.Even in the “naturality”, we can think both id𝑋 and the zero map for “the arrow”. Thanks to god, it is not“an arrow”. If so, since it’s abelian, we may think 𝑥2𝑥 or similar maps.I have no respect for this problem.1.The arrow 𝑓 is monic and epic.The arrow 𝑓 is monicConsider following commutative diagram.𝑔𝑓(𝐵,𝐴)(𝑋,0)(𝑋,𝑋)𝑏𝐵𝑓(𝑔(𝑏))=𝑓((𝑏))𝑓(𝑔(𝑏))+𝑓((𝑏))1=0𝑋𝑓(𝑔(𝑏))+𝑓((𝑏)1)=0𝑋𝑓(𝑔(𝑏)+(𝑏)1)=0𝑋𝑔(𝑏)+(𝑏)1=0𝑋(assume𝑓is injective)𝑔(𝑏)=(𝑏)Therefore, 𝑓𝑔=𝑓𝑔=Thus, 𝑓 is monic.The arrow 𝑓 is epicConsider following commutative diagram𝑓𝑔(𝑋,0)(𝑋,𝑋)(𝐵,𝐴)𝑥𝑋Let's say the value of𝑓(𝑥)as𝑦𝑔(𝑓(𝑥))=(𝑓(𝑥))𝑔(𝑦)=(𝑦)Therefore, 𝑔𝑓=𝑓𝑔=Thus, 𝑓 is epic.2.𝑓 is not an isomorphismThe 𝑓 is isomorphism if there’s a map (𝑋,𝑋)𝑔(𝑋,0) with following condition𝑓𝑔=id(𝑋,𝑋), and𝑔𝑓=id(𝑋,0)By definition, 𝑔img(𝑋)=0, which means (𝑓𝑔)(𝑥)=0, in other words 𝑓𝑔id(𝑋,𝑋).As a consequence, there’s no such 𝑔.Thus, 𝑓 is not an isomorphism3.The category is not abelianBy proposition 70.2.6. the category cannot be abelian.Proposition 70.2.6 (Isomorphism monic and epic)In an abelian category, a map is an isomorphism if and only if it is monic and epic.